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Abstract

Weighted model integration (WMI) extends
Weighted model counting (WMC) to the in-
tegration of functions over mixed discrete-
continuous domains. It has shown tremen-
dous promise for solving inference problems
in graphical models and probabilistic program-
ming. Yet, state-of-the-art tools for WMI are
limited in terms of performance and ignore
the independence structure that is crucial to
improving efficiency. To address this limita-
tion, we propose an efficient model integra-
tion algorithm for theories with tree primal
graphs. We exploit the sparse graph struc-
ture by using search to performing integration.
Our algorithm greatly improves the compu-
tational efficiency on such problems and ex-
ploits context-specific independence between
variables. Experimental results show dramatic
speedups compared to existing WMI solvers
on problems with tree-shaped dependencies.

1 INTRODUCTION

Weighted model counting (WMC) is the task of count-
ing the weighted sum of all satisfying assignments of a
propositional logic theory, where weights are associated
to models and are typically factorized into the product of
weights of individual variables. In recent years, WMC
was shown to be an effective solution for addressing
probabilistic inference in a wide spectrum of formalisms
(Sang et al., 2005; Chakraborty et al., 2014; Ermon et al.,
2013; Chavira and Darwiche, 2008; Choi et al., 2013;
Van den Broeck and Suciu, 2017; Fierens et al., 2015).

An inherent limitation of WMC is that it can only deal
with discrete distributions. In order to overcome this re-
striction, weighted model integration (WMI) (Belle et al.,

2015a) was introduced as a generalization of WMC to-
wards hybrid domains, characterized by both discrete
and continuous variables. The formalism relies on satis-
fiability modulo theory (SMT) (Barrett and Tinelli, 2018)
technology, which permits reasoning about the satisfi-
ability of theories involving, for example, linear con-
straints over reals. WMI works by summing a simple
weight function over solutions to Boolean variables and
integrating over solutions to the real variables of an SMT
theory. Weight functions play the role of (unnormalized)
densities, whereas the logic theory captures the struc-
ture of the distribution. WMI (or closely related formu-
lations) has recently been applied to a number of non-
trivial probabilistic graphical model and programming
tasks (Chistikov et al., 2015; Albarghouthi et al., 2017;
Morettin et al., 2017; Belle, 2017; Braz et al., 2016).

Both WMI and WMC are sum-of-product prob-
lems (Bacchus et al., 2009). In discrete domains, such
problems are amenable to a divide-and-conquer ap-
proach called search-based inference, where variables
are instantiated recursively until the inference prob-
lem decomposes. Solving WMC by search, exploit-
ing problem-specific structure, has been shown to be
highly effective, in particular on graphical models that
exhibit sparsity (Chavira and Darwiche, 2008). How-
ever, progress in WMI is far from its Boolean counter-
part, and currently does not exploit independence. More
generally, exact inference algorithms for hybrid graphi-
cal models do not exploit sparsity and structure as much
as discrete graphical model inference algorithms.

As a first approach to leverage structure, in this paper,
we propose a search-based inference procedure for exact
model integration that leverages decomposition to speed
up inference. We demonstrate how local structure en-
coded in SMT theories gives rise to context-specific de-
composition during search, reducing the number of mod-
els to be generated and integrated over. The integration
problem is decomposed into sub-problems by initiating
shared variables and recursing independently on the re-
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sulting simplified SMT theories. We show how to choose
finitely many values to instantiate continuous variables
with, and subsequently do polynomial interpolation to
recover exact answers to WMI problems. Our complex-
ity analysis proves the first tractability result for a non-
trivial class of WMI problems. Moreover, our experi-
mental evaluation confirms that the approach is drasti-
cally faster than existing alternatives on WMI problems
with sparse, tree-shaped primal graphs.

2 BACKGROUND

We assume that the reader is familiar with propositional
logic and the SAT problem (Biere et al., 2009). Model
counting (#SAT) is the task of counting the number so-
lutions (models) to a given SAT problem (Gomes, 2009).
Weighted model counting (WMC) generalizes this task
by summing weights associated with individual SAT so-
lutions. It is widely used as tool for probabilistic reason-
ing (Sang et al., 2005; Chavira and Darwiche, 2008; Er-
mon et al., 2013; Chakraborty et al., 2014; Fierens et al.,
2015; Van den Broeck and Suciu, 2017).

Satisfiability Modulo Theories (SMT) generalizes SAT
to determining the satisfiability of a formula with respect
to a decidable background theory. In particular, we will
consider quantifier-free SMT formulas in the theory of
linear arithmetic over the reals, or SMT(LRA). Here,
formulas are Boolean combinations of atomic proposi-
tions (e.g., a, b), and of atomic LRA formulas over real
variables (e.g., x < y + 5). Variable instantiations are
denoted as b? or x?. Sets are denoted in boldface.

Example 2.1. For a house i, let pricei be its price
and sqft i its square footage. We can build a simple
SMT(LRA) formula γi of the relationship between these
real variables as follows.

γi =

 (pricei < 10 · sqft i + 1000)
∨ (pricei < 20 · sqft i + 100)

(0 < pricei < 3000) ∧ (0 < sqft i < 200)

The corresponding solution space is depicted in Figure 1.
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Figure 1: Feasible region of SMT theory γi from Example 2.1

Weighted model integration (WMI) generalizes WMC to
support SMT(LRA) formulas and real variables (Belle
et al., 2015a). In its simplest form, model integration
(MI) or #SMT (Chistikov et al., 2015) simply computes

the volume of the solution space. For example, the green
area in Figure 1 is 430,250. General WMI is defined as
follows (Belle et al., 2015a; Morettin et al., 2017).

Definition 2.2. Suppose we have n real variables x, m
Boolean variables b, an SMT(LRA) formula θ(x, b),
ranging over x and b, and a weight function w(x, b)
that maps variable instantiations to real weights. Then,
weighted model integration (WMI) computes

WMI(θ, w | x, b) =
∑

b?∈Bm

∫
θ(x,b?)

w(x, b?) dx.

That is, the WMI is obtained by summing over every
instantiation (total truth assignment) b? to the Boolean
variables, and integrating w(x, b∗) over the set of solu-
tions {x∗ | θ(x∗, b?) is SAT}.

Weight functionsw are usually defined as products of lit-
eral weights (Belle et al., 2015a; Chavira and Darwiche,
2008). That is, for some set of literals L we are given
a set of per-literal weight functions P = {p`(x)}`∈L.
When literal ` is satisfied in a world, denoted x∧ b |= `,
that world’s weight is multiplied by p`(x). Formally,

w(x, b) =
∏
`∈L

x∧b|=`

p`(x).

When all variables are Boolean (i.e., x = ∅), the per-
literal weights p`(x) are constants and we retrieve the
original definition of WMC as a special case (Chavira
and Darwiche, 2008). In this paper, we assume that all
per-literal weights are polynomials. This setting is ex-
pressive enough to approximate any continuous distribu-
tion (Belle et al., 2015a). Moreover, we will show that
this class of weight functions is well-behaved. In particu-
lar, it allows for a natural reduction to unweighted model
integration and is amenable to efficient integration.

Example 2.3. Consider a formula (b ∨ ¬b) ∧ γi
where b is a Boolean variable and γi is as defined
in Example 2.1. Consider the set of literals L =
{b, (0 < pricei < 3000)} and per-literal weight func-
tions P = {pb, p(0<pricei<3000)}, with pb(x) = 1.5 and
p(0<pricei<3000)(x) = price2

i . Then, in worlds where
both literals in L are satisfied, our weight function is

pb(pricei, sqft i) · p(0<pricei<3000)(pricei, sqft i)

= 1.5 · price2
i .

In worlds where b is false and only (0 < pricei < 3000)
is satisfied, the weight function is price2

i .

WMI was introduced as a tool for hybrid probabilistic
reasoning. Indeed, the weight of each world can be in-
terpreted as an unnormalized density, and the WMI is



its partition function subject to the logical constraints.
Under these semantics, suppose that we are interested in
the probability of query q = pricei < 2000 in house
price model γi. That probability can be computed as
the ratio of two WMI problems: Pr(q) = WMI(γi ∧
q)/WMI(γi) = 350,250/430,250 = 81.4%.

Exact WMI Solvers The first solver for exact WMI
(Belle et al., 2015a) (BC) was a proof-of-concept relying
on a simple block-clause strategy. It iteratively gener-
ates new models of a Boolean abstraction of the SMT
formula. Each model individually is easily integrated us-
ing tools such as LATTE (Baldoni et al., 2011; De Lo-
era et al., 2013). Belle et al. (2016) proposed an all-
satisfying-assignments-based solver (ALLSMT). Unfor-
tunately, enumerating models of the SMT abstraction is
prohibitive in practice – there are exponentially many
models, and enumerating them does not exploit struc-
tural properties of the SMT theory such as independence.
Improvements to this algorithm include knowledge-
compilation-based solvers (Kolb et al., 2018) (XADD),
and predication-abstraction solvers (Belle et al., 2016;
Morettin et al., 2017) (PA). Nevertheless, most WMI
solvers come with no tractability guarantees and still
enumerate Boolean models even when there is abundant
independence structure, as we will show next.

3 STRUCTURE IN WMI PROBLEMS

This section shows how to reduce WMI to model integra-
tion (MI) problems whose structural independence prop-
erties can be captured by graph abstractions.

3.1 INDEPENDENCE

We begin by motivating why we want to exploit indepen-
dence structure during probabilistic reasoning.

Example 3.1. Consider n houses, and conjoin the theory
γi from Example 2.1 n times, once for each house, into
a larger SMT(LRA) theory γ = ∧ni=1γi. The n houses
are independent, because no formula in γ connects the
properties of different houses. Therefore, it is clear that
the WMI of γ can be computed by multiplying the WMI
of each individual theory γi. Figure 2 takes the weight
functionw to be 1 and compares existing WMI solvers on
this simple problem. No existing solver is able to exploit
the extreme independence structure in γ. The algorithm
we propose in this paper (SMI), however, runs in linear
time, as expected by the trivial factorization.

This explosion in runtime is due to the fact that exist-
ing solvers ignore independence between variables in
the SMT(LRA) theory. However, in discrete graphical

Figure 2: WMI runtime on independent model in Example 3.1.
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Figure 3: Primal graph and search tree for (y ∨ x1)∧ (y ∨ x2).

models and WMC, leveraging independence to decom-
pose problems is at the core of all exact inference meth-
ods, and search-based algorithm in particular (Darwiche,
2009; Dechter and Mateescu, 2007). Specifically, ex-
act discrete inference methods create independence even
when it is not immediately present, by performing a case
analysis on selected discrete variables, initializing them
to all values, and simplifying the model. Through this
process, search-based inference algorithm induce and
exploit context-specific independence (Boutilier et al.,
1996). The decompositions afforded by (conditional and
context-specific) independence tremendously reduce the
computational cost of inference. Example 3.1 illustrated
that this intuition carries over to WMI problems.

In what follows, we first describe the graph abstraction of
SMT theories that characterizes dependencies between
variables. These form the basis of our algorithm. Sec-
ond, we show how WMI in hybrid domains can be re-
duced to unweighted MI in real domains. Hence, the
solver we develop in this paper will target MI problems.

3.2 GRAPH ABSTRACTIONS OF SMT

Primal graphs are often used to characterize variable
dependencies. For the example Boolean CNF formula
θB = (y ∨ x1) ∧ (y ∨ x2) the primal graph is shown in
Figure 3a. Its edges encode that variable pairs (y, x1)
and (y, x2) appear in the same clause, while (x1, x2)
never appear together, and are thus independent given y.
Similarly, we will use primal graphs for SMT theories to
capture variable dependency information as follows.



y

x1 x2 xn· · ·

(a) Primal graph of theory θn

y

x1

−1 0 1

(b) Feasible region for θ1

Figure 4: Primal graph and feasible region from Example 3.3.

Definition 3.2. (Primal graph of SMT) The primal
graph of an SMT(LRA) CNF is an undirected graph
whose vertices are all variables and whose edges con-
nect any two variables that appear in the same clause.

Example 3.3. Consider the following theory θn.

θn =

{
(−1 ≤ y ≤ 1) ∧ (−0.5 ≤ x1, · · · , xn ≤ 0.5)
(xi + 1 ≤ y) ∨ (y ≤ xi − 1), for all i ∈ [n]

Figure 4 shows its primal graph and solution space.

While there are many flavors of search-based exact
inference, including recursive conditioning (Darwiche,
2001), DPLL model counting (Sang et al., 2005), knowl-
edge compilation (Chavira and Darwiche, 2008), and
SumProd algorithms (Bacchus et al., 2009), we use the
And/Or-search framework to illustrate the concept (Nils-
son, 1982; Dechter and Mateescu, 2007).

The And/Or search algorithm for WMC problems recur-
sively simplifies a discrete counting problem by alter-
nating between two steps. The first (OR) step selects a
Boolean variable and tries to instantiate it to both true
and false (we will later see how to choose the variable).
The second (AND) step finds ways of partitioning the
WMC problem into independent sub-problems that can
be solved separately. Such sub-problems are introduced
by instantiating variables in the OR step in a way that
creates independence. The OR step is also called the
Shannon expansion. The AND step is also referred to
as component caching (Sang et al., 2005) or detecting
decomposability (Chavira and Darwiche, 2008).

This process is illustrated in Figure 3b for the earlier
Boolean CNF θB . Circles denote OR-step variables
whose square-node children are its instantiations. After
instatiating y, the search tree creates independent prob-
lems for x1 and x2. This independence can be read off
directly from the primal graph in Figure 3a.

Search-based algorithms (with caching) are known to run
efficiently on WMC problems with a tree or tree-like pri-
mal graph (Darwiche, 2009; Bacchus et al., 2009).

3.3 MODEL INTEGRATION IS ALL YOU NEED

This section casts hybrid WMI problems into model in-
tegration problems over only real variables. We consider

the case where per-literal weight functions are monomi-
als – functions of the form βxα1

1 · · ·xαn
n over real vari-

ables xi where β ∈ R and αi ∈ N. We further assume
that literals inL also appear in the theory, and that literals
and their weights range over the same real variables.

We first show that any WMI problem with Boolean
variables can be reduced to a WMI problem without
Booleans. Then we show that WMI problems with per-
literal weights can be reduced to an unweighted model
integration problem where the weight function is 1.

Proposition 3.4. For each problem WMI(θ, w | x, b)
there exists an equivalent problem WMI(θ′, w′ | x′)
without Boolean variables b such that

WMI(θ, w | x, b) = WMI(θ′, w′ | x′)

and the primal graphs of θ and θ′ are isomorphic.

Without loss of generality, the previous proposition lets
us focus on WMI problems with no Boolean variables.

Certain weight functions can also be reduced as follows.

Proposition 3.5. For each problem WMI(θ, w | x) with
per-literal weights w as defined in this section, there ex-
ists an equivalent unweighted problem MI(θ′ | x′) s.t.

WMI(θ, w | x) = MI(θ′ | x′).

Moreover, theories θ and θ′ have identical primal graph
treewidth (Robertson and Seymour, 1986).

Both reductions can be constructed in polynomial time.
Similar efficient reductions exist for arbitrary polynomial
weight functions, but can slightly increase treewidth.

Example 3.6. Consider the SMT(LRA) theory (b ∨
¬b) ∧ γi with its literal set L and per-literal weight
functions P as defined in Example 2.3. There exists
an equivalent model integration problem MI(δ | x ∪
{λb, zb, z(1)i , z

(2)
i }) with a weight function of 1 and with-

out Boolean variables. Its SMT(LRA) theory is

δ =


γi ∧ (−1 < λb < 1)
λb > 0 ⇒ (0 < zb < 1.5)

¬(λb > 0)⇒ (0 < zb < 1)

∧j=1,2 (0 < z
(j)
i < pricei).

Note that the primal graph of δ remains a tree.

4 SEARCH-BASED MI

The goal of our work is to take advantage of the inde-
pendence structure in SMT(LRA) theories to reduce the
computational cost of model integration. Our solution is
to exploit context-specific independence by search.
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Figure 5: Continuous search trees for θ2 from Example 3.3.

One obstacle is that to introduce independence in discrete
search, we instantiate a variable with all values in its do-
main. Unfortunately, when the variable has a real domain
(e.g., y ∈ [0, 1]), we cannot instantiate it with every value
in its domain, since there are uncountably many (see Fig-
ure 5a). This basic limitation has precluded the use of
search-based inference in continuous graphical models.

We overcome this problem by observing that MI is inte-
gration over a piecewise polynomial, which can be fully
recovered from a finite number of points. Specifically,
for real variable x in theory θ, if we instantiate the vari-
able x with a value α, then the MI of theory θ ∧ (x = α)
is the density of WMI(θ, w) at x = α. Recall the fact
that a polynomial function f with degree d defined over
an interval I is uniquely defined by its values at d + 1
distinct points in interval I , and that a closed-form ex-
pression for f can be recovered exactly and efficiently.

Consider again the theory γi from Example 2.1. As
shown in Figure 1, function f(α) = MI(γi ∧ (sqft i =
α)) is a piecewise polynomial with three intervals. We
can recover all three polynomials from a finite number of
points, and thus obtain the integration of f(α) , that is,
the model integration MI(γi). This motivates the search-
based model integration algorithm we develop next.

4.1 VARIABLE INSTANTIATION

We first show that when per-literal weight functions P
are polynomials, WMI of theory θ can be obtained by
doing search with finite instantiations on real variables.

Proposition 4.1. Let x be a real variable in SMT(LRA)
theory θ. Suppose that per-literal weight functions P are
polynomials. Then WMI is an integration over a univari-
ate piecewise polynomial p(x), that is,

WMI(θ, w | x, b) =
∫
I

p(x)dx (1)

where piecewise polynomial p(x) is integrated over set
{x∗ | ∃x̂∗,∃b∗ s.t. θ(x∗, x̂∗, b∗) is SAT} denoted by I .

y

p(y)
p−(y) p+(y)

◦ ◦
◦

••
•

−1 −0.5 10.50

Figure 6: Piecewise polynomial p(y) as defined in Proposi-
tion 4.1 for theory θ2 from Example 3.3, whose integration is
MI(θ2). The two polynomials p−(y) and p+(y) are unknown,
but we can recover them from a finite number of points.

The set I is a union of disjoint supports of piecewise
polynomial p(x). We refer to these intervals as “pieces”.
To describe our model integration algorithm, we first as-
sume in this section that these intervals and their poly-
nomial degrees are given. Our method to explicitly find
these intervals and degrees will be given in Section 4.2.

Although Proposition 4.1 holds for WMI problem with
polynomial per-literal weight functions in general, we
use the insights from Section 3.3 to only focus on model
integration problems. For interval set I defined in Propo-
sition 4.1, suppose we are given the interval pieces
[l, u] ∈ I and degrees d of their associated polynomials.
If we instantiate the real variable x with d + 1 distinct
values in each piece [l, u] of degree d, and solve any sub-
problems recursively, we can recover polynomial pl,u(x)
defined on interval [l, u] by polynomial interpolation on
d+1 points. Finally, model integration of the full theory
θ can be computed as follows.

MI(θ, w | x, b) =
∑

[l,u]∈I

∫ u

l

pl,u(x)dx. (2)

For example, consider theory θ2 from Example 3.3. We
can interpret MI(θ2) as an integration over piecewise
polynomial p(y) whose intervals [−1,−0.5] and [0.5, 1]
both have associated degree two. After instantiating y
to three values in each interval, we get two independent
sub-MI problems that contain variable x1 and variable x2
respectively. By solving these sub-problems, we obtain
three points fitted by each polynomial p−(y) and p+(y)
as shown in Figure 6. Therefore, we can recover both
by polynomial interpolation and can obtain MI(θ2) by
Equation 2. Figure 5b depicts the search space of this
algorithm on interval [0.5, 1].

The above discussion has shown that for model inte-
gration problems, we can instantiate a real variable to
finitely many values, decompose the problem into in-
dependent parts, and then solve the sub-problems re-
cursively. Algorithm 1 follows exactly this strategy for
search-based model integration. Details on caching to
speed up the algorithm are included in Appendix B. The
remaining problem is how to exactly obtain pieces [l, u]



Algorithm 1 MI: Search-based MI
Input: T : pseudo tree, θ: SMT(LRA) theory
Output: p: MI of theory θ

1: if T is a forest of trees T ′ then
2: θ′ ← sub-theories containing variables in T ′

3: return
∏
T ′MI(T ′, θ′)

4: p = 0, r = root(T ), STr = set of subtrees below r
5: I = PE NODE(θ, r) . defined later in Sec. 4.2.
6: for all polynomial piece {[l, u], d} ∈ I do
7: select d+ 1 distinct values αi’s in [l, u]
8: yi ← MI(STr, θ |(r=αi))
9: pl,u(x)← polynomial interpolation on (αi, yi)’s

10: p =
∑

[l,u]∈I
∫ u
l
pl,u(x)dx

11: Return p

and their associated degrees d. We show our solution to
this problem in the following section.

4.2 FINDING PIECES VIA CRITICAL POINTS

Recall that by Proposition 4.1, WMI of SMT(LRA) the-
ory θ can be rewritten as WMI(θ, w | x, b) =

∫
I
p(x)dx

where function p(x) is a piecewise polynomial, set I is
a union of disjoint support of polynomials in p(x), and
each piece [l, u] ∈ I is associated with a polynomial de-
gree d. We hope that when a real variable x in theory θ
is chosen to be instantiated, we can find all pieces and
their associated polynomial degrees for piecewise poly-
nomial p(x). It turns out that this can be achieved. We
will first describe our method in a basic case where there
are only two real variables in the theory. We then extend
this approach to theories with tree primal graphs.

4.2.1 Base Case: Pieces of Two Real Variables

First we investigate a simple case where there are only
two real variables in SMT(LRA) theory θ, denoted by
x and y respectively. Recall that we are solving an un-
weighted model integration problem. We would like to
find pieces and associated polynomial degrees for real
variable x such that we can instantiate x as in Section 4.1:

p(x) =

∫
θ(x,y)

1 dy =
∑

[l(x),u(x)]∈I(x)

∫ u(x)

l(x)

1 dy

=
∑

[l(x),u(x)]∈I(x)

(u(x)− l(x))

where set I(x) is defined as

{[l(x), u(x)] | ∀y ∈ [l(x), u(x)], θ(x, y) is SAT}. (3)

That is, for any fixed value x∗, the set I(x∗) consists of
intervals of consistent values for variable y. We can view

the set I(x) as an integration bound set of integration
bounds [l(x), u(x)].

For any piece [l, u] of piecewise polynomial p(x), the
two values x = l and x = u are endpoints of the
piece only if integration bound set I(x) changes at these
points, since the piecewise polynomial p(x) is defined
by these bounds. That is, for arbitrarily small ε, we have
I(l− ε) 6= I(l+ ε), and it also holds at point x = u. We
formally define critical points below.

Definition 4.2. (Critical Point) Let θ be an SMT(LRA)
theory with two real variables, and denote one of the real
variables by x. Let I(x) be an integration bound set de-
fined in Equation 3. Then x = a is a critical point if for
arbitrarily small ε, it holds that I(l − ε) 6= I(l + ε).

Remark. The comparison of set I(x) is done symboli-
cally. That is, for two distinct value α, β, we say I(α) =
I(β) if they have the same set of symbolic integration
bounds. For example, if at x = α, I(x) = {[1, x]} and at
x = β 6= α, I(x) = {[1, x]}, it holds that I(α) = I(β).
However, if at x = α, I(x) = {[1, x]} and at x = β,
I(x) = {[x, 2]}, then we say I(α) 6= I(β).

Our idea is that, if we can find all critical points x = α
where the set I(x) changes, then we can partition real
domains of x into disjoint intervals, such that any sup-
port of piecewise polynomial p(x) is either one of these
intervals or a union of some intervals. For the result-
ing interval [l, u], we can apply an SMT(LRA) solver to
θ′ = θ ∧ (l ≤ x ≤ u) to check whether it is a satisfiable
piece of function p(x); if this is true, we can obtain the
polynomial degree of pl,u(x) defined over this piece by
simply traversing theory θ′. We summarize this proce-
dure as PE EDGE in Algorithm 2.

4.2.2 General Case: Pieces of Tree Structures

Given an SMT(LRA) theory θ with primal graph G as
a tree, our goal is to enumerate pieces and their associ-
ated degrees for the root variable r, building on the algo-
rithm we developed in the base case above. It turns out
that enumerating pieces in tree primal graph can be done
through search.

Specifically, we first partition theory θ into sub-theories
θr,c and θGc

for each c, such that θ = ∧
c
(θr,c ∧ θGc

),
variables c are the child variables of root r, and graphGc
is the sub-tree rooted at variable c. Each theory θr,c con-
tains only variables r and c, on which we can apply the
enumeration we develop in basic case, and each theory
θGc contains only variables in sub-treeGc. This is possi-
ble provided that the primal graph of theory θ has a tree
structure. This is also why our algorithm is restricted to
SMT(LRA) theories with tree primal graphs.



Algorithm 2 PE EDGE – For Two Variable Theory
Input: θ: SMT(LRA) theory with two real variable
I : interval and degree tuples of variable y
Output: Ix: pieces and degrees for variable x

1: B ← collect integration bounds on variable y
2: X ← set of solutions for any two bounds in B
3: for all interval [l, u] resulting from X do
4: if SMT(θ ∧ (l ≤ x ≤ u)) then
5: {(ly, uy, d)} ← get bounds and degree(y,
θ ∧ (l ≤ x ≤ u), I)

6: Ix ← Ix ∪ ([l, u], d = max{d′ | d′ =
get degree(ly, uy, d)})

7: Return Ix

For each child variable c, we first obtain its pieces with
respect to theory θGc

in a recursive way. Then we can
apply our enumeration algorithm for two-variable theory
PE EDGE to theory θr,c with the given pieces of vari-
able c. What we would get are sets of pieces for each
child variable c. To be consistent with theory θ, we need
to take intersections of these sets which we refer to as the
shattering operation. Finally, the resulting intersections
are pieces and polynomial degrees for root variable r. We
provide more details of this procedure called PE NODE
in Algorithm 3 in Appendix C.

As described above, our piece enumeration algorithm
is applicable to model integration problems for theories
with tree primal graphs. Moreover, it is also applicable
to WMI problems whose SMT theory has a tree primal
graph and whose per-literal weights are monomials as
described in Section 3.3, because then our reduction al-
gorithm from WMI to MI can preserve the tree structure
of the primal graph.

4.3 COMPLEXITY ANALYSIS

Our search algorithm for model integration needs to
choose which variables to instantiate first. This choice
can be based on a tree data structure that orders the vari-
ables. Such a tree characterizes the computational com-
plexity as it does for discrete And/Or search algorithms.

We first formally defined the tree that gives order to the
variable instantiations and guides the search.

Definition 4.3. (Pseudo Tree) Given an undirected
graph G with vertices and edges (V,EG), a pseudo tree
for G is a directed rooted tree T with vertices and edges
(V,ET ) (i.e., the same set of vertices as G), s.t. any
edge e that is in G but not in T must connect a vertex
in T to one of its ancestors.

That is, edge e = (v1, v2) such that e ∈ EG and e /∈ ET
implies that either vertex v1 is an ancestor of vertex v2 in

T or vertex v2 is an ancestor of vertex v1 in T .

We perform a complexity analysis on the search space
generated during model integration by our algorithm.
Since our algorithm performs model integration by
search, the time and space complexity of our algorithm
on a theory without Boolean variables is described by the
size of the search space during integration. Discussions
here do not take caching into consideration.

Theorem 4.4. (Size Of Search Space) Consider an
SMT(LRA) theory θ with a tree-shaped primal graph
with height hp, and a pseudo tree T with l leaves and
height ht. Let c be the number of LRA literals in
θ, and n be the number of real variables. Then the
size of the search space generated by our algorithm is
O(l · (n3 · chp)ht).

Hence, we can conclude that the complexity of our al-
gorithm is bounded exponentially by tree heights of both
the primal graph and pseudo tree. In fact, for any tree-
shaped primal graph, we can always choose a pseudo tree
whose height ht is O(log n) to guide the search (Dechter
and Mateescu, 2007). Moreover, the number of leaves in
pseudo tree T is no larger than the number of nodes n.
Then we have the following corollary.

Corollary 4.5. Following the notation in Theorem 4.4,
with properly chosen pseudo tree T whose tree height ht
is of sizeO(log n), the size of the search space generated
by our algorithm is O(n3 logn+1+log c·hp).

Therefore, the complexity of our algorithm is mainly de-
cided by tree heights of primal graphs hp. In the worst
case when tree primal graphs have tree height of size
O(n), for instance a path graph, whose tree height is n
when choosing the starting node to be root, the worst-
case complexity of our algorithm isO(nn log c) by Corol-
lary 4.5. That is, the time complexity is worst-case super-
exponential.

In cases when the tree primal graph has tree height
of size O(log n), the complexity of our algorithm is
O(n(3+log c) logn+1) which is of quasi-polynomial com-
plexity, and considered to be efficient. Trees with tree
height of size O(log n) are a general class of trees and
also general in modeling. Balancing trees like AVL trees
and full k-ary trees are of tree height O(log n). Another
example is a star graph, which has one internal node and
all other nodes as leaves. This graph corresponds to the
well-known naive Bayes structure for directed graphical
models. It is the primal graph of a theory modeling inde-
pendent variables predicting one and the same dependent
(class) variable. The tree height of star graphs is constant
1 when choosing the internal node as root. Hence, our al-
gorithm runs efficiently on such WMI problems.



(a) MI runtime on star primal graphs. (b) MI runtime on full 3-ary tree graphs. (c) MI runtime on path primal graphs.

(d) Star primal graph with nodes n = 8. (e) Full 3-ary tree with nodes n = 12. (f) Path primal graph with nodes n = 5.

Figure 7: (a)-(c) Model integration execution time on SMT(LRA) with tree primal graphs. (d)-(f) Example tree primal graphs.

5 EMPIRICAL EVALUATION

We analyze the performance of our search-based model
integration algorithm on SMT(LRA) theories with tree
primal graphs. First, we show that our algorithm is effi-
cient for theories whose primal graphs has constant tree
heights, or tree heights of log scale w.r.t. the number of
real variables n. For theories whose primal graph has tree
heights O(n), the cases where our algorithm has super-
exponential worst-case complexity in theory, empirical
results show that our algorithm still runs efficiently. We
also consider a more complex house price model where
house sizes are dependent, as opposed to those in Exam-
ple 3.1. Moreover, the house price model has non-trivial
weight functions where our algorithm first cast it into a
model integration problem as described in Section 3.3.
We compare our algorithm to several WMI solver bench-
marks and conclude that our algorithm significantly out-
performs existing solvers on these benchmarks.

Benchmarks We compare our algorithm (SMI) with
other WMI solvers. The block-clause-strategy-based
solver (BC) (Belle et al., 2015a) iteratively generates new
models by adding the negation of the latest model to the
formula for the following iteration. The all-satisfying-
assignments-based solver (ALLSMT) (Belle et al., 2016)
first generates the set of all LRA-satisfiable total truth
assignments on atoms that propositionally satisfy the the-
ory. The predicate-abstraction-based solver (PA) (Moret-
tin et al., 2017) exploits the power of SMT-based pred-
icate abstraction to reduce the number of models to
be integrated over. The extended algebraic-decision-
diagram-based solver (XADD) (Kolb et al., 2018) uses a
circuit-based compilation language and exploits that cir-

cuit structure during integration.

5.1 TREE PRIMAL GRAPHS

We investigate the performance of our algorithm on
SMT(LRA) theories with three types of tree primal
graphs: 1) star graphs, consisting of one center node
connected to all other nodes, where any two other nodes
are disconnected; 2) full 3-ary trees, whose non-leaf ver-
tices have exactly 3 children and all levels are full except
for some rightmost position of the bottom level; 3) path
graphs, consisting of linearly connected nodes. These
structural constraints arise naturally in data and many
graphical modeling problems.

For each graph type, given a number of nodes n, we in-
troduce n real variables x = {x0, x1, · · · , xn−1} with
bounded domains ∀i, (−1 ≤ xi ≤ 1). Denote the graph
by G = (V,E) where V = {0, 1, · · · , n− 1} is the ver-
tex set and E = {(i, j), i, j ∈ V } is the edge set. We
perform model integration for the following theory and
increasing values of n.

θ(x) =

{
∧i∈V (−1 ≤ xi ≤ 1)
∧(i,j)∈E((xi + 1 ≤ xj) ∨ (xj ≤ xi − 1))

Figure 7 shows example primal graphs and the execution
time of the experiments, using our algorithm as well as
other WMI solvers.

For model integration over theories with three types of
tree primal graphs, our algorithm significantly outper-
form other WMI solvers in terms of execution time. The
runtime curves of other solvers grow seemingly expo-
nentially while our curve grows slowly with the num-
ber of real variables. For theories with star graphs and



(a) WMI runtime on house price models. (b) Primal graph

Figure 8: Runtime and primal graph for house price model.

full 3-ary trees as primal graphs, the time curves of our
algorithm are consistent with our complexity analysis
in Section 4.3 claiming that our algorithm has quasi-
polynomial complexity. For theories with path graphs
as primal graphs, which are still sparse graphs, we
perform caching and our runtime curve grows slowly,
even though our worst-case analysis allows for a super-
exponential time complexity.

5.2 HOUSE PRICE SMT(LRA) MODEL

In Example 3.1 we performed model integration for mul-
tiple houses based on extreme independence assump-
tions. Now we consider a more complicated case where
houses are not independent and there are Boolean vari-
ables in the SMT(LRA) model. Moreover, we choose
non-trivial per-literal weight functions for the model in
order to evaluate our algorithm for reducing WMI prob-
lems to unweighted model integration problems.

Specifically, we now consider n houses that are located
along a street. Each house i has its price and square
footage model as in Example 2.1. Additionally, we
enforce the constraint that square footage between two
neighboring houses should not vary too much and we
use a Boolean variable b to indicate whether or not these
houses are located in an urban area. This gives the fol-
lowing SMT(LRA) theory.

γstreet =

{
(b ∨ ¬b) ∧ni=1 γi
∧n−1i=1 (sqft i ≤ sqft i+1 + offset)

where offset is a constant characterizing maximum
difference in square footage between two neighboring
houses. For weight function w, consider the set of
literals L = {b} ∪ {(0 < pricei < 3000) | i =
1, · · · , n} and per-literal weight functions P = {pb} ∪
{p(0<pricei<3000) | i = 1, · · · , n}, with pb(x) = 1.5 and
p(0<pricei<3000)(x) = price2

i for all i. Then, in worlds
where all literals in L are satisfied, our weight function
is 1.5

∏n
i=1 price2

i . In worlds where b is false but other
literals are satisfied, the weight function is

∏n
i=1 price2

i .

Figure 8 shows an example primal graph and WMI run-
time results for this house price model.

6 RELATED WORK & CONCLUSIONS

SMT (Barrett et al., 2010) has been one of the most
prominent advances in automated reasoning and many
efficient SMT solvers have been built (De Moura and
Bjørner, 2008; Barrett et al., 2011; Cimatti et al., 2013;
Dutertre, 2014). The counting version of SMT, that
is #SMT, and in particular #SMT(LA) is a fundamen-
tal problem in quantitative program analysis (Liu and
Zhang, 2011; Geldenhuys et al., 2012; Filieri et al., 2014;
Phan et al., 2014; von Gleissenthall et al., 2015; Filieri
et al., 2015). The #SMT(LA) problem is known to be
#P-hard (Valiant, 1979), as is model counting. Although
the focus of this paper is on exact inference, there also
exist notable approximate solutions to #SMT(LA) and
WMI (Ma et al., 2009; Belle et al., 2015b; Chakraborty
et al., 2016; Chistikov et al., 2017).

Braz et al. (2016) propose an algorithm called
SGDPLL(T ) for solving probabilistic inference mod-
ulo theories while also generating simpler sub-problems.
They do so by case analysis on integer-variable
SMT literals, and do not support WMI problems for
SMT(LRA). Similar to our observation that WMI prob-
lems can be reduced to MI problems, for WMC problem,
Chakraborty et al. (2015) propose a method to reduce
WMC to unweighted model counting problems, which
allows them to exploit advances in model counting.

Morettin et al. (2017) enumerate integrable spaces by
predicate abstraction and allow general weight functions.
Kolb et al. (2018) use case functions as weights, which
still permits compilation into XADD circuits. Weight
functions in these two cases are not consistent with the
factorization structure of the SMT sentence. The factor-
ization structure is a crucial aspect of efficient inference,
and its isolation to the logical part of WMC/WMI is con-
sidered to be an advantage, facilitating solver building.
Our definition of factorized weight functions is similar
to Belle et al. (2015a) and Zuidberg Dos Martires et al.
(2019). Belle et al. (2016) exploit independence in WMI
problems that are trivially equivalent to WMC problems.

In this paper we proposed a search-based WMI algo-
rithm that exploits structural independence properties
to improve efficiency. For WMI on SMT(LRA) theo-
ries with tree primal graphs and piecewise polynomial
weight functions, our algorithm decomposes WMI prob-
lem during search. Complexity analysis shows that for
balanced tree primal graphs, our algorithm yields quasi-
polynomial complexity. Experimental comparisons con-
firm a drastic efficiency improvement.
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A Proofs

A.1 Proof of Proposition 3.4

Proof. (Proof of Proposition 3.4)

Consider the most basic case when there is only one
Boolean variable b in theory θ. Let θ′ be an SMT(LRA)
theory defined as follow

θ′ = θ{b : λb} ∧ (−1 ≤ λb ≤ 1)

where θ{b : λb} is obtained by replacing all atom b by
0 < λb and replacing all its negation ¬b by λb < 0 in
theory θ.

Recall that weight functions are defined by a set of lit-
erals L and a set of per-literal weight functions P =
{p`(x)}`∈L. When literal ` is satisfied in a world, de-
noted x ∧ b |= ` and then weights are defined as follows

w(x, b) =
∏
`∈L

x∧b|=`

p`(x).

Let L′ be a set of literals obtained by replacing Boolean
literal b by 0 < λb and replacing its negation ¬b by λb <
0 in theory θ as we do for theory. For the set of per-
literal weight functions P ′, we define it for introduced
real variable λb by p(λb>0) = pb and p(λb<0) = p¬b.

Then we have that for any x∗,

w′(x∗, λb) =

{
w(x∗, b), 1 > λb > 0
w(x∗,¬b), −1 < λb < 0

By definition of WMI, we write WMI(θ, w | x, b) in its
integration form as follows.

WMI(θ, w | x, b)

=

∫
θ(x,b)

w(x, b)dx+

∫
θ(x,¬b)

w(x,¬b)dx

For the first term in the above equation, we can rewrite it
s.t. Boolean variable b is replaced by real variable λb in
the following way.∫

θ(x,b)

w(x, b)dx =

∫ 1

0

∫
θ(x,b)

w(x, b)dxdλb

=

∫
θ′(x,λb)

w′(x, λb)dxdλb

By doing this to the other integration term of WMI(θ, w |
x, b), and also by the definition of WMI, we finally ob-
tain that

WMI(θ, w | x, b) = WMI(θ′, w′ | x′)

where x′ = x∪{λb} is a set of real variables. The proof
above can be easily adapted to multiple Boolean variable
cases, which proves our proposition.

A.2 proof of Proposition 3.5

Proof. (proof of Proposition 3.5) To start with, we con-
sider SMT(LRA) theory θ with no Boolean variables
with a simple weight function w where the set of literal
L = {`} has only one literal and literal weight function
p`(x) =

∏n
i=0 x

pi
i .

Claim A.1. For a monomial function f(x) =
∏n
i=0 x

pi
i ,

let θf =
∧n
i=0 ∧

pi
j=1(0 ≤ zij ≤ xi). Then we have the

monomial f(x) = MI(θf | z;x), where z is the set
of real variables zij in theory θf , and x is parameters of
theory θf .

Let θ′ = θ ∧ (` ⇒ θp) ∧ (¬` ⇒ θ̂p) where p = p`
for brevity, θp is as defined in Claim A.1 and θ̂p :=∧n
i=0 ∧

pi
j=1(0 ≤ zij ≤ 1). Then we can rewrite

WMI(θ, w | x) as model integration problem by Claim
A.1 as follows.

WMI(θ, w | x) =
∫
θ(x)

w(x)dx

=

∫
θ(x)∧`(x)

p(x)dx+

∫
θ(x)∧¬`(x)

1dx

=

∫
θ(x)∧`(x)

MI(θp | z;x)dx+

∫
θ(x)∧¬`(x)

1dx

=

∫
θ(x)∧`(x)

∫
θp(z)

1dzdx+

∫
θ(x)∧¬`(x)

1dx

= MI(θ ∧ (`⇒ θp) ∧ (¬`⇒ θ̂p) | x, z)

Take x′ = x ∪ z then the proposition holds. The
proof can be easily adapted for monomials with non-
trivial coefficient by inducing more real variables z. It
also holds for more general weight functions with literal
set L = {`i}ki=1 and set of monomial per-literal weight
functions P = {p`i}ki=1, by taking theory θ′ as follows
which completes the proof of proposition.

θ′ = θ ∧
k∧
i=1

(`i ⇒ θp`i ) ∧
k∧
i=1

(¬`i ⇒ θ̂p`i ).



Proof. (proof of Claim A.1) By definition of theory θf ,

MI(θf | z;x) =
∫
θf (z)

1dz

=

n∏
i=1

pi∏
j=1

∫ xi

0

1dzij

=

n∏
i=1

pi∏
j=1

xi =

n∏
i=1

xpii = f(x).

A.3 proof of Proposition 4.1

Proof. (proof of Proposition 4.1) It follows from defi-
nition of WMI. Denote the set of real variables x\{x}
by x̂. From the definition of WMI in Equ. 2.2, we can
obtain the following partial derivative of WMI of theory
δ w.r.t. variable x.

∂

∂x
WMI(θ, w | x, b) |x=x∗

=
∑
µ∈Bm

∫
θ(x̂,x∗,µ)

w(x̂, x∗, µ)dx̂

where the variable x is fixed to value x∗ in weight func-
tion, µ are total truth assignments to Boolean variables as
defined before. The weight function is integrated over set
{x̂∗ | θ(x̂∗, x∗, µ) is true}. We define p(x) as follow

p(x) :=
∑
µ∈Bm

∫
θ(x̂,x,µ)

w(x̂, x, µ)dx̂

Since weight functions w are piecewise polynomial,
function p(x) is a univariate piecewise polynomial p(x),
and WMI(θ, w | x, b) is an integration over p(x), which
finishes our proof.

A.4 Proof of Theorem 4.4

Claim A.2. For each path in the primal graph that starts
with the root and ends with a leaf, and each real variable
in path with height i, its number of polynomial pieces is
O(n · ci+1).

Proof. Prove by mathematical induction. Denote the real
variable with height i in the path by xi For i = 0, since
the number of LRA literals is c, then there are at most c
critical points for real variable x0 and therefore there are
at most c+ 1 polynomial pieces for x0.

Suppose that the claim holds for i, that is, the number of
polynomial pieces for xi isO(n ·ci+1). To obtain critical
points for variable xi+1, we collect integration bounds

on variable xi whose size is O(n · ci+1) by assumption.
Since the critical points of variable xi+1 are obtained by
solving b1 = b2 w.r.t. variable xi+1 for b1, b2 in bounds
on variable xi, where there are at most c bounds contain-
ing xi+1 and the rest bounds are numerical ones, there
are at most O(n · ci+2) solutions. Therefore, the num-
ber of polynomial pieces for xi+1 is O(n · ci+2), which
finishes our proof.

Proof. (Proof of Theorem 4.4) Let p be an arbitrary
path in the pseudo tree T that starts with the root and ends
with a leaf. Denote the maximum polynomial degree in
weight functions by d. By Claim A.2 for each variable,
it has at most O(n · chp) polynomial pieces. Moreover
from Prop. 4.1, polynomials defined over each pieces
have at most n(d+ h) polynomial degree. Therefore the
set of values chosen to do instantiation on a certain real
variable has size O(n3 · chp) and each path p induces a
search space with size O((n3 · chp)ht) since length of
each path is bounded by ht.

The pseudo tree T is covered by l such directed paths.
The union of their individual search spaces covers the
whole search space, where every distinct full path in the
search space appears exactly once. Therefore, the size of
the search space is bounded by O(l · (n3 · chp)ht).

B CACHING

Our algorithm allows caching in two sense. The first is
the caching of pieces, i.e. intervals and polynomial de-
grees obtained from child nodes, which can be consid-
ered as constraints from child nodes. The pieces of a cer-
tain nodes is decided both by instantiation values from
its father node as well as pieces from child nodes. Al-
though we instantiate root nodes with distinct values, the
constraints from child nodes for a certain node remains
unchanged as long as they have the same father-child re-
lation in subtree.

Another case where caching is possible is values of p(x)
as defined in Prop. 4.1 at instantiations of variable x.
This is possible because for a certain node, its pieces re-
sulting from different instantiation values of its grand-
father node might intersects. This is especially helpful
when there is a long path in primal graphs and caching
can save a lot computational effort.

C Pieces Enumeration Algorithm

We summarize piece enumeration algorithms for two
variable theory and for theory with tree primal graphs
as described in Sec. 4.2 in Alg. 3.



Algorithm 3 PE NODE – For Tree Primal Graph
Input: θ: SMT theory with tree primal graph
G: primal graph for theory θ
Output: I: interval and degree tuples of root variable r

1: if root r has no child then
2: Ir ← get bounds(θ)
3: return Ir
4: θr,c’s, θGc ’s← partition SMT(LRA) theory θ
5: for all child c do
6: Ic ← PE NODE(θc, Gc)
7: Icr ← PE EDGE(c, θr,c, Ic)

8: Return I = shatter({Icr}c)
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