
Learning Relational Representations with Auto-encoding Logic Programs

Sebastijan Dumančić1∗ , Tias Guns2 , Wannes Meert1 and Hendrik Blockeel1
1KU Leuven, Belgium

2VUB, Belgium
{sebastijan.dumancic, wannes.meert, hendrik.blockeel}@cs.kuleuven.be, tias.guns@vub.be

Abstract
Deep learning methods capable of handling rela-
tional data have proliferated over the last years.
In contrast to traditional relational learning meth-
ods that leverage first-order logic for representing
such data, these deep learning methods aim at re-
representing symbolic relational data in Euclidean
spaces. They offer better scalability, but can only
numerically approximate relational structures and
are less flexible in terms of reasoning tasks sup-
ported. This paper introduces a novel framework for
relational representation learning that combines the
best of both worlds. This framework, inspired by
the auto-encoding principle, uses first-order logic
as a data representation language, and the mapping
between the original and latent representation is
done by means of logic programs instead of neu-
ral networks. We show how learning can be cast
as a constraint optimisation problem for which ex-
isting solvers can be used. The use of logic as a
representation language makes the proposed frame-
work more accurate (as the representation is exact,
rather than approximate), more flexible, and more
interpretable than deep learning methods. We exper-
imentally show that these latent representations are
indeed beneficial in relational learning tasks.1

1 Introduction
Deep representation learning (DL) [Goodfellow et al., 2016]
has proven itself to be an important tool for modern-day ma-
chine learning (ML): it simplifies the learning task through a
series of data transformation steps that define a new feature
space (so-called latent representation) making data regulari-
ties more explicit. Yet, DL progress has mainly focused on
learning representations for classifiers recognising patterns
in sensory data, including computer vision and natural lan-
guage processing, having a limited impact on representations
aiding automated reasoning. Learning such reasoning sys-
tems falls under the scope of Statistical Relational Learning
(SRL) [Getoor and Taskar, 2007], which combines knowledge

∗Contact Author
1Supplementary material: https://arxiv.org/abs/1903.12577

representation capabilities of first-order logic with probability
theory and hence express both complex relational structures
and uncertainty in data. The main benefit of SRL models, that
most ML methods lack, is the ability to (1) operate on any kind
of data (feature vectors, graphs, time series) using the same
learning and reasoning principles, and (2) perform complex
chains of reasoning and answer questions about any part of a
domain (instead of one pre-defined concept).

Recent years have yielded various adaptations of stan-
dard neural DL models towards reasoning with relational
data, namely Knowledge graph embeddings [Nickel et al.,
2016] and Graph neural networks [Kipf and Welling, 2017;
Hamilton et al., 2017]. These approaches aim to re-represent
relational data in vectorised Euclidean spaces, on top of which
feature-based machine learning methods can be used. Though
this offers good learning capabilities, it sacrifices the flexibility
of reasoning [Trouillon et al., 2019] and can only approximate
relational data, but not capture it in its entirety.

This work proposes a framework that unites the benefits of
both the SRL and the DL research directions. We start with
the question:

Is it possible to learn latent representations of re-
lational data that improve the performance of SRL
models, such that the reasoning capabilities are pre-
served?

Retaining logic as a representation language for latent rep-
resentations is crucial in achieving this goal, as retaining it
inherits the reasoning capabilities. Moreover, it offers addi-
tional benefits. Logic is easy to understand and interpret (while
DL is black-box), which is important for trust in AI systems.
Furthermore, SRL methods allow for incorporation of expert
knowledge and thus can easily build on previously gathered
knowledge. Finally, SRL systems are capable of learning from
a few examples only, which is in sharp contrast to typically
data-hungry DL methods.

We revisit the basic principles of relational representation
learning and introduce a novel framework to learn latent rep-
resentations based on symbolic, rather than gradient-based
computation. The proposed framework implements the auto-
encoder principle [Hinton and Salakhutdinov, 2006] – one of
the most versatile deep learning components – but uses logic
programs as a computation engine instead of (deep) neural net-
works. For this reason, we name our approach Auto-encoding
logic programs (Alps).



Figure 1: An auto-encoding logic program maps the input data,
given in a form of a set of facts, to its latent representation through
an encoding logic program. A decoding logic program maps the
latent representation of data back to the original data space. The
facts missing from the reconstruction (e.g., saber(vader,red)) and the
wrongly reconstructed facts (e.g., saber(vader,green)) consitute the
reconstruction loss.

Alongside the formalism of Alps, we contribute a generic
procedure to learn Alps from data. The procedure translates
the learning task to a constraint optimisation problem for
which existing efficient solvers can be used. In contrast to
neural approaches, where the user has to provide the architec-
ture beforehand (e.g., a number of neurons per layer) and tune
many hyper-parameters, the output of Alps is an architecture,
a relational one, in itself. Notably, we show that the learned la-
tent representations help with learning SRL models afterwards:
SRL models learned on the latent representation outperform
the models learned on the original data representation.

2 Auto-encoding Logic Programs
Auto-encoders learn new representations through the recon-
struction principle: the goal is to learn an encoder, mapping
the input data to its latent representation, and a decoder, map-
ping the latent representation back to the original space so
that the input data can be faithfully reconstructed. For a la-
tent representation to be useful, it is important to prevent it
from learning an identity mapping – often done by limiting
the dimensionality and/or enforcing sparsity.

In neural auto-encoders, data is represented with vectors
and mapping functions are matrices. Our goal is, intuitively, to
lift the framework of auto-encoders to use first-order logic as a
data representation language, and logic programs as mapping
functions of encoder and decoder (Figure 1). In the following

paragraphs, we describe the basic components of Alps.
Data. To handle arbitrary relational data, Alps represent data
as a set of logical statements, such as father(vader,luke) (Fig-
ure 1, Input). These statements consist of constants represent-
ing the entities in a domain (e.g., vader, luke) and predicates
indicating the relationships between entities (e.g., father). A
ground atom is a predicate symbol applied to constants (e.g.,
father(vader,luke)); if an atom evaluates to true, it represents
a fact. Given a set of predicates P and a set of constants C
(briefly, a vocabulary (P, C) ), the Herbrand base HB(P, C)
is the set of all atoms that can be constructed using P and C.
A knowledge base is a subset of the Herbrand base; it contains
all the atoms that evaluate to true.
Mapping functions. The mapping functions of both en-
coder and decoder are realised as logic programs. A logic
program is a set of clauses – logical formulas of the form h :-
b1,. . . ,bn , where h is called the head literal and bi are body
literals (comma denotes conjunction). A literal is an atom or
its negation. Literals can contain variables as arguments; these
are by definition universally quantified. Given a vocabulary
(P, C), we call a literal a (P, C)-literal if its predicate is in
P and its argument are constants in C or variables. Clauses
are read as logical implications; e.g., the clause mother(X,Y)
:- parent(X,Y),female(X) states that for all X and Y , X is a
mother of Y if X is a parent of Y and X is female.
Encoding program. Given an input vocabulary (P, C), an
encoding logic program E (Fig. 1 middle left) is a set of
clauses with (P, C)-literals in the body and a positive (L, C)-
literal in the head, where L is a set of predicates that is disjoint
with P and is extended by the learner as needed. E takes
as input a knowledge base KB ⊆ HB(P, C) and produces
as output a latent representation KB′ ⊆ HB(L, C), more
specifically the set of all facts that are implied by E and KB.
Decoding program. A decoding logic program D similarly
maps a subset of HB(L, C) back to a subset of HB(P, C).
Its clauses are termed decoder clauses; they contain (L, C)
literals in the body and a positive (P, C)-literal in the head.
Alps. Given encoding and decoding logic programs E andD,
their composition D ◦ E is called an auto-encoding logic pro-
gram (Alp). An Alp is lossless if for any KB, D(E(KB)) =
KB. In this paper, we measure the quality of Alps using the
following loss function:

Definition 1 Knowledge base reconstruction loss. The
knowledge base reconstruction loss (the disagreement between
the input and the reconstruction), loss(E ,D,KB), is defined
as

loss(E ,D,KB) = |D(E(KB)) ∆ KB| (1)
where ∆ is the symmetric difference between two sets.

3 Learning as Constraint Optimisation
With the main components of Alps defined in the previous
section, we define the learning task as follows:

Definition 2 Given a knowledge base KB and constraints
on the latent representation, find E and D that minimise
loss(E ,D,KB) and E(KB) fulfils the constraints.



The constraints on the latent representation prevent it from
learning an identity mapping. For example, enforcing sparsity
by requiring that the E(KB) has at most N facts. We formally
define these constraints later.

Intuitively, learning Alps corresponds to a search for a
well-performing combination of encoder and decoder clauses.
That is, out of a set of possible encoder and decoder clauses,
select a subset that minimises the reconstruction loss. To
find this subset, we introduce a learning method inspired by
the enumerative and constraint solving techniques from pro-
gram induction [Gulwani et al., 2017] (illustrated in Figure
2). Given a KB and predicates P , we first enumerate possi-
ble encoder clauses. These clauses define a set of candidate
latent predicates L which are subsequently used to generate
candidate decoder clauses. The obtained sets, which define
the space of candidate clauses to choose from, are then pruned
and used to formulate the learning task as a generic constraint
optimisation problem (COP) [Rossi et al., 2006]. Such a COP
formulation allows us to tackle problems with an extremely
large search space and leverage existing efficient solvers. The
COP is solved using the Oscar solver2. The resulting solution
is a subset of the candidate encoder and decoder clauses that
constitute an Alp.

A COP consists of three components: decision variables
whose values have to be assigned, constraints on decision
variables, and an objective function over the decision vari-
ables that expresses the quality of the assignment. A solution
consists of a value assignment to the decision variables such
that all constraints are satisfied. In the following sections, we
describe each of these components for learning Alps.

3.1 Decision Variables: Candidate Clauses
The COP will have one Boolean decision variable eci for each
generated candidate encoder clause, and a Boolean decision
variable dci for each generated candidate decoder clause, indi-
cating whether a clause is selected (having the value 1) or not
(having value 0).

To generate the candidate encoder clauses, we start from the
predicates in the input data and generate all possible bod-
ies (conjunctions or disjunctions of input predicates with
logic variables as entities) up to a given maximum length
l. Furthermore, we enforce that the predicates share at least
one logic variable, e.g. p1(X,Y ), p2(Y, Z) is allowed while
p1(X,Y ), p2(Z,W ) is not. For each possible body, we then
define a new latent predicate that will form the head of the
clause. This requires deciding which variables from the body
to use in the head. We generate all heads that use a subset
of variables, with the maximal size of the subset equal to the
maximum number of arguments of predicates P . Candidate
decoder clauses are generated in the same way, but starting
from the predicates L.

3.2 Constraints
Bottleneck Constraint
The primary role of constraints in Alps is to impose a bottle-
neck on the capacity of the latent representation; this is the key
ingredient in preventing the auto-encoder from learning the

2https://bitbucket.org/oscarlib/oscar/wiki/Home

Figure 2: Learning Alps. Given the data and a set of predicates as an
input, we first enumerate possible encoder clauses and subsequently
the decoder clauses. These are used to generate the COP encoding, in-
cluding the constraints and the objective, which is pruned and passed
to the COP solver. The solver returns the selected encoder/decoder
clauses and the latent representation.

identity mapping as E and D. This is often done by enforcing
compression in the latent representation, sparsity or both.

The straightforward way of imposing compression in Alps
is to limit the number of facts in the latent representation.
Preliminary experiments showed this to be a very restrictive
setting. In Alps we impose the bottleneck by limiting the aver-
age number of facts per latent predicate through the following
constraint ∑N

i=1 wieci∑N
i=1 eci

≤ γG

where eci are decision variables corresponding to the encoder
clauses, wi is the number of latent facts the encoder clause eci

entails, G is the average number of facts per predicate in the
original data representation and γ is the compression parame-
ter specified by the user. For example, in Figure 1, G = 9/5
and w = 4 for latent1(X,Y) :- mother(X,Y); father(X,Y) .

Semantic Constraints
The secondary role of constraints is to impose additional
structure to the search space, which can substantially speed
up the search. The following set of constraints reduces the
search space by removing undesirable and redundant solu-
tions3. These constraints are automatically generated and do
not require input from the user.

Connecting encoder and decoder. A large part of the
search space can be cut out by noticing that the encoder clauses
deterministically depend on the decoder clauses. For instance,
if a decoder clause mother(X,Y) :- latent1(X,Y),latent2(X) is

3Exact constraint formulations are in the supplementary material



selected in the solution, then the encoder clauses defining the
latent predicates latent1 and latent2 have to be selected as well.
Consequently, encoder clauses are implied by decoded clauses
and search only has to happen over candidate decoder clauses.
The implication is modelled with a constraint ensuring that
the final solution must contain an encoder clause defining a
predicate l if the solution contains at least one of the decoder
clauses that use l in the body.
Generality. Given the limited capacity of the latent repre-
sentation, it is desirable to prevent the solver from ever explor-
ing regions where clauses are too similar and thus yielding a
marginal gain. One way to establish the similarity of clauses
is to analyse the ground atoms the clauses cover: a clause c1
is said to be more general than a clause c2 if all examples
entailed by c2 are also entailed by c1. As c2 cannot bring new
information if c1 is already a part of the solution, we introduce
constraints ensuring that if a clause c1 is more general than a
clause c2, at most one of them can be selected.
Reconstruct one of each input predicates. If KB contains
a predicate with a substantially larger number of facts than the
other predicates inKB, a trivial but undesirable solution is one
that focuses on reconstructing the predicate and its facts while
ignoring the predicates with a smaller number of facts. To
prevent this, we impose the constraints ensuring that among all
decoder clauses with the same input predicate in the head, at
least one has to be a part of the solution. This, of course, does
not mean all facts of each input predicate will be reconstructed.
We did notice that this constraint allows the solver to find a
good solution substantially faster.

3.3 Objective Function: The Reconstruction Loss
We wish to formulate the objective over all missing (inKB but
not being reconstructed) and false reconstructions (produced
by the decoder, but not in KB). To do so, we first obtain
a union of latent facts generated by each of the candidate
encoder clauses; these are a subset ofHB(L, C). These latent
facts allow us to obtain a union of all ground atoms generated
by the candidate decoder clauses; these form a reconstruction
and are a subset ofHB(P, C). Additionally, for each ground
atom in the reconstruction, we remember which candidate
decoder clause reconstructed it.

We hence use the above correspondence between the can-
didate decoder clauses and the reconstructions to create an
auxiliary Boolean decision variable rfi for each possible
ground atom inHB(P, C) that can be reconstructed. Whether
it is reconstructed or not depends on the decoder clauses that
are in the solution.

For example, assume that mother(padme,leia) can be recon-
structed with either of the following decoder clauses:

mother(X,Y ) :- latent1(X,Y ), latent2(X).

mother(X,Y ) :- latent3(X,Y ).

Let the two decoder clauses correspond to the decision vari-
ables dc1 and dc2. We introduce rfi to represent the recon-
struction of fact mother(padme,leia) and add a constraint

rfi ⇔ dc1 ∨ dc2.

Associating such boolean variable rfe with every e ∈
HB(P, C), we can formulate the objective as

minimize
∑
i∈KB

not(rfi)︸ ︷︷ ︸
missing reconstruction

+
∑

j∈HB(P,C)\KB

rfj .︸ ︷︷ ︸
false reconstruction

(2)

3.4 Search
Given the combinatorial nature of Alps, finding the optimal
solution exactly is impossible in all but the smallest problem
instances. Therefore, we resort to the more scalable technique
of large neighbourhood search (LNS) [Ahuja et al., 2002].
LNS is an iterative search procedure that, in each iteration,
performs the exact search over a subset of decision variables.
This subset of variables is called the neighbourhood and it
is constructed around the best solution found in the previous
iterations.

A key design choice in LNS is the construction of the neigh-
bourhood. The key insight of our strategy is that the solution
is necessarily sparse – only a tiny proportion of candidate
decoder clauses will constitute the solution at any time. There-
fore, it is important to preserve at least some of the selected
decoder clauses between the iterations. Let a variable be ac-
tive if it is part of the best solution found so far, and inactive
otherwise. We construct the neighbourhood by remembering
the value assignment of α % active variables (corresponding
to decoder clauses), and β % inactive variables corresponding
to encoder clauses. For the individual search runs, we use last
conflict search [Gay et al., 2015] and the max degree ordering
of decision variables.
3.5 Pruning the Candidates
As the candidate clauses are generated naively, many can-
didates will be uninformative and introduce mostly false re-
constructions. It is therefore important to help the search by
pruning the set of candidates in an insightful and non-trivial
way. We introduce the following three strategies that leverage
the specific properties of the problem at hand.
Naming variants. Two encoder clauses are naming variants
if and only if they reconstructed the same set of ground atoms,
apart from the name of the predicate of these ground atoms. As
such clauses contain the same information w.r.t. the constants
they contain, we detect all naming variants and keep only one
instance as a candidate.
Signature variants. Two decoder clauses are signature vari-
ants if and only if they reconstructed the same set of ground
atoms and their bodies contain the same predicates. As signa-
ture variants are redundant w.r.t. the optimisation problem, we
keep only one of the clauses detected to be signature variants
and remove the rest.
Corruption level. We define the corruption level of a de-
coder clause as a proportion of the false reconstructions in the
ground atoms reconstructed by the decoder clause. This turns
out to be an important notion: if the corruption level of a de-
coder clause is greater than 0.5 then the decoder clause cannot
improve the objective function as it introduces more false than
true reconstructions. We remove the candidate clauses that
have a corruption level ≥ 0.5.

These strategies are very effective: applying all three of
them during the experiments has cut out more than 50 % of
candidate clauses.



4 Experiments and Results
The experiments aim at answering the following question:

Q: Does learning from latent representations cre-
ated by Alps improve the performance of an SRL
model?

We focus on learning generative SRL models, specifically
generative Markov Logic Networks (MLN) [Richardson and
Domingos, 2006]. The task of generative learning consists of
learning a single model capable of answering queries about any
part of a domain (i.e., any predicate). Learning an SRL model
consists of searching for a set of logical formulas that will be
used to answer the queries. Therefore, we are interested in
whether learning the structure of a generative model in latent
space, and decoding it back to the original space, is more
effective than learning the model in the original data space.

We focus on this task primarily because no other represen-
tation learning method can address this task. For instance,
embeddings vectorise the relational data and thus cannot cap-
ture the generative process behind it, nor do they support
conditioning on evidence.

The deterministic logical mapping of Alps might seem in
contrast with the probabilistic relational approaches of SRL.
However, that is not the case as the majority of SRL ap-
proaches consider data to be deterministic and express the
uncertainty through the probabilistic model.
Procedure. We divide the data in training, validation and
test sets respecting the originally provided splits. The models
are learned on the training set, their hyper-parameters tuned
on the validation set (in the case of Alps) and tested on the
test set. This evaluation procedure is standard in DL, as full
cross-validation is infeasible. We report both AUC-PR and
AUC-ROC results for completeness; note, however, that the
AUC-PR is the more relevant measure as it is less sensitive
to class imbalance [Davis and Goadrich, 2006], which is the
case with the datasets we use in the experiments. We evaluate
the MLNs in a standard way: we query facts regarding one
specific predicate given everything else as evidence and repeat
it for each predicate in the test interpretation.
Models. We are interested in whether we can obtain better
SRL models by learning from the latent data representation.
Therefore, we compare the performance of an MLN learned on
the original representation (the baseline MLN) and an MLN
learned on the latent representation (the latent MLN) resulting
from Alps. To allow the comparison between the latent and
the baseline MLNs, once the latent MLN is learned we add
the corresponding decoder clauses as deterministic rules. This
ensures that the baseline and latent MLNs operate in the same
space when being evaluated.
Learner. Both the baseline and the latent MLNs are obtained
by the BUSL learner [Mihalkova and Mooney, 2007]. We have
experimented with more recent MLN learner LSM [Kok and
Domingos, 2010], but tuning its hyper-parameters proved chal-
lenging and we could not get reliable results. Note that our
main contribution is a method for learning Alps and subse-
quently the latent representation of data, not the structure of an
MLN; MLNs are learned on the latent representation created
by Alps. Therefore, the exact choice of an MLN learner is

not important, but whether latent representation enables the
learner to learn a better model is.
Practical considerations. We limit the expressivity of
MLN models to formulas of length 3 with at most 3 vari-
ables (also known as a liftable class of MLNs). This does not
sacrifice the predictive performance of MLNs, as shown by
Van Haaren et al. [2016]. Imposing this restriction allows us to
better quantify the contribution of latent representations: given
a restricted language of the same complexity if the latent MLN
performs better that is clear evidence of the benefit of latent
representations. The important difference when performing
inference with a latent MLN is that each latent predicate that
could have been affected by the removal of the test predicate
(i.e., the test predicate is present in the body of the encoder
clause defining the specific latent predicate). Hence it has to
be declared open world, otherwise, MLNs will assume that all
atoms not present in the database are false.
Alps hyper-parameters. As with standard auto-encoders,
the hyper-parameters of Alps allow a user to tune the latent
representation to its needs. To this end, the hyper-parameters
pose a trade-off between the expressivity and efficiency. When
learning latent representations, we vary the length of the en-
coder and decoder clauses separately in {2, 3} and the com-
pression level (the α parameter) in {0.3, 0.5, 0.7}.
Data. We use standard SRL benchmark datasets often used
with MLN learners: Cora-ER, WebKB, UWCSE and IMDB.
The descriptions of the datasets are available in [Mihalkova
and Mooney, 2007; Kok and Domingos, 2010], while the
datasets are available on the Alchemy website4.

4.1 Results
The results (Figure 3) indicate that BUSL is able to learn
better models from the latent representations. We observe
an improved performance, in terms of the AUC-PR score, of
the latent MLN on all datasets. The biggest improvement is
observed on the Cora-ER dataset: the latent MLN achieves a
score of 0.68, whereas the baseline MLN achieves a score of
0.18. The IMDB and WebKB datasets experience smaller but
still considerable improvements: the latent MLNs improve the
AUC-PR scores by approximately 0.18 points. Finally, a more
moderate improvement is observed on the UWCSE dataset:
the latent MLN improves the performance for 0.09 points.

These results indicate that latent representations are a use-
ful tool for relational learning. The latent predicates capture
the data dependencies more explicitly than the original data
representation and thus can, potentially largely, improve the
performance. This is most evident on the Cora-ER dataset. To
successfully solve the task, a learner has to identify complex
dependencies such as two publications that have a similar
title, the same authors and are published at the same venue
are identical. Such complex clauses are impossible to ex-
press with only three predicates; consequently, the baseline
MLN achieves a score of 0.18. However, the latent represen-
tation makes these pattern more explicit and the latent MLN
performs much better, achieving the score of 0.68.

Neural representation learning methods are sensitive to the
hyper-parameter setup, which tend to be domain dependent.

4http://alchemy.cs.washington.edu/



Cora-ER
AUC PR AUC ROC

0

1

0

1

original latent

.18

.68

0

1

0

1

original latent

.56

.82

WebKB
AUC PR AUC ROC

.66
.83 .90 .91

UWCSE
AUC PR AUC ROC

.29 .37

.77 .78

IMDB
AUC PR AUC ROC

.60
.78

.88 .90

Figure 3: The MLN models learned on the latent data representations created by Alps outperform the MLN models learned on the original data
representation, in terms of the AUC-PR scores (red line indicate the increase in the performance), on all dataset. The AUC-ROC scores, which
are less reliable due to the sensitivity to class imbalance, remain unchanged.

Cora
IMDB
UWCSE
WebKB

0 50,000100,000 200,000 250,000
Number of variables

0

3

20

10

1

Solving time (h)

Figure 4: Relationship between runtimes and the number of variables.

We have noticed similar behaviour with Alps by inspecting the
performance on the validation set (details in the supplement).
The optimal parameters can be selected, as we have shown,
on a validation set with a rather small grid as Alps have only
three hyper-parameters.
Runtime. Figure 4 summarises the time needed for learning
a latent representation. These timings show that, despite their
combinatorial nature, Alps are quite efficient: the majority of
latent representations is learned within an hour, and a very
few taking more than 10 hours (this excludes the time needed
for encoding the problem to COP, as we did not optimise that
step). In contrast, inference with MLN takes substantially
longer time and was the most time-consuming part of the
experiments. Moreover, the best result on each dataset (Figure
3) is rarely achieved with the latent representation with the
most expressive Alp, which are the runs that take the longest.

5 Related Work
The most prominent paradigm in merging SRL and DL
are (knowledge) graph embeddings [Nickel et al., 2016;
Hamilton et al., 2017]. In contrast to Alps, these methods
do not retain full relational data representation but approxi-
mate it by vectorisation. Several works [Minervini et al., 2017;
Demeester et al., 2016] impose logical constraints on embed-
dings but do not retain the relational representation.

Kazemi and Poole [2017] and Sourek et al. [2016] intro-
duce symbolic variants of neural networks for relational data.
Evans and Grefenstette [2018] introduce a differentiable way
to learn predictive logic programs. These are likewise capa-
ble of discovering latent concepts (predicates), but focus on

predictive learning, often with a pre-specified architecture.
Several works integrate neural and symbolic components

but do not explore learning new symbolic representation.
Rocktäschel and Riedel [2017] introduce a differentiable ver-
sion of Prolog’s theorem proving procedure, which Campero
et al. [2018] leverage to acquire logical theories from data.
Manhaeve et al. [2018] combine symbolic and neural reason-
ing into a joint framework, but only consider the problem of
parameter learning not the (generative) structure learning.

Inventing a new relational vocabulary defined in terms of the
provided one is known as predicate invention in SRL [Kramer,
1995; Cropper and Muggleton, 2018]. In contrast to Alps,
these methods create latent concepts in a weakly supervised
manner – there is no direct supervision for the latent predicate,
but there is indirect supervision provided by the accuracy of
the predictions. An exception to this is the work by Kok and
Domingos [2007]; however, it does not provide novel language
constructs to an SRL model, but only compresses the existing
data by identifying entities that are identical.

We draw inspiration from program induction and synthe-
sis [Gulwani et al., 2017], in particular, unsupervised methods
for program induction [Ellis et al., 2015; Lake et al., 2015].
These methods encode program induction as a constraint satis-
faction problem similar to Alps, however, they do not create
new latent concepts.

6 Conclusion
This work introduce Auto-encoding Logic Programs (Alps)
– a novel logic-based representation learning framework for
relational data. The novelty of the proposed framework is that
it learns a latent representation in a symbolic, instead of a
gradient-based way. It achieves that by relying on first-order
logic as a data representation language, which has a benefit
of exactly representing the rich relational data without the
need to approximate it in the embeddings spaces like many
of the related works. We further show that learning Alps can
be cast as a constraint optimisation problem, which can be
solved efficiently in many cases. We experimentally evaluate
our approach and show that learning generative models from
the relational latent representations created by Alps results in
substantially improved AUC-PR scores compared to learning
from the original data representation.

This work shows the potential of latent representations for
the SRL community and opens challenges for bringing these
ideas to their maturity; in particular, the understanding of
the desirable properties of relational representations and the
development of scalable methods to create them.



References
[Ahuja et al., 2002] Ravindra K. Ahuja, Özlem Ergun,

James B. Orlin, and Abraham P. Punnen. A survey of
very large-scale neighborhood search techniques. Discrete
Appl. Math., 123(1-3):75–102, 2002.

[Campero et al., 2018] Andres Campero, Aldo Pareja, Tim
Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical
rule induction and theory learning using neural theorem
proving. CoRR, abs/1809.02193, 2018.

[Cropper and Muggleton, 2018] Andrew Cropper and
Stephen H. Muggleton. Learning efficient logic programs.
Machine Learning, 2018.

[Davis and Goadrich, 2006] Jesse Davis and Mark Goadrich.
The relationship between precision-recall and roc curves.
In ICML, pages 233–240, 2006.

[Demeester et al., 2016] Thomas Demeester, Tim
Rocktäschel, and Sebastian Riedel. Lifted rule in-
jection for relation embeddings. In EMNLP, pages
1389–1399, 2016.

[Ellis et al., 2015] Kevin Ellis, Armando Solar-Lezama, and
Joshua B. Tenenbaum. Unsupervised learning by program
synthesis. In NIPS, pages 973–981, 2015.

[Evans and Grefenstette, 2018] Richard Evans and Edward
Grefenstette. Learning explanatory rules from noisy data.
J. Artif. Intell. Res., 61:1–64, 2018.

[Gay et al., 2015] Steven Gay, Renaud Hartert, Christophe
Lecoutre, and Pierre Schaus. Conflict ordering search for
scheduling problems. In Principles and Practice of Con-
straint Programming, pages 140–148. Springer, 2015.

[Getoor and Taskar, 2007] Lise Getoor and Ben Taskar. Intro-
duction to Statistical Relational Learning (Adaptive Com-
putation and Machine Learning). The MIT Press, 2007.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep Learning. MIT Press, 2016.

[Gulwani et al., 2017] Sumit Gulwani, Oleksandr Polozov,
and Rishabh Singh. Program synthesis. Foundations and
Trends R© in Programming Languages, 4(1-2):1–119, 2017.

[Hamilton et al., 2017] William L. Hamilton, Rex Ying, and
Jure Leskovec. Representation learning on graphs: Meth-
ods and applications. IEEE Data Eng. Bull., 40(3):52–74,
2017.

[Hinton and Salakhutdinov, 2006] G. E. Hinton and R. R.
Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

[Kazemi and Poole, 2017] Seyed Mehran Kazemi and David
Poole. Relnn: A deep neural model for relational learning.
In AAAI, 2017.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Kok and Domingos, 2007] Stanley Kok and Pedro Domin-
gos. Statistical predicate invention. In ICML, pages 433–
440, 2007.

[Kok and Domingos, 2010] Stanley Kok and Pedro Domin-
gos. Learning markov logic networks using structural mo-
tifs. In ICML, pages 551–558, 2010.

[Kramer, 1995] Stefan Kramer. Predicate Invention: A Com-
prehensive View. Technical report, 1995.

[Lake et al., 2015] Brenden M. Lake, Ruslan Salakhutdinov,
and Joshua B. Tenenbaum. Human-level concept learn-
ing through probabilistic program induction. Science,
350:1332–1338, 2015.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Duman-
cic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic pro-
gramming. In NeurIPS, pages 3749–3759. 2018.

[Mihalkova and Mooney, 2007] Lilyana Mihalkova and Ray-
mond J. Mooney. Bottom-up learning of markov logic
network structure. In ICML, 2007.

[Minervini et al., 2017] Pasquale Minervini, Thomas De-
meester, Tim Rocktäschel, and Sebastian Riedel. Adver-
sarial sets for regularising neural link predictors. In UAI,
2017.

[Nickel et al., 2016] M. Nickel, K. Murphy, V. Tresp, and
E. Gabrilovich. A review of relational machine learning for
knowledge graphs. Proceedings of the IEEE, 104(1):11–33,
2016.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Mach. Learn.,
62(1-2):107–136, 2006.

[Rocktäschel and Riedel, 2017] Tim Rocktäschel and Sebas-
tian Riedel. End-to-end differentiable proving. In NIPS,
pages 3788–3800. Curran Associates, Inc., 2017.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and
Toby Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc.,
2006.

[Sourek et al., 2016] Gustav Sourek, Suresh Manandhar,
Filip Zelezny, Steven Schockaert, and Ondrej Kuzelka.
Learning Predictive Categories Using Lifted Relational
Neural Networks, volume 10326 of LNAI. Springer Inter-
national Publishing, 2016.

[Trouillon et al., 2019] Théo Trouillon, Eric Gaussier,
Christopher R. Dance, and Guillaume Bouchard. On
inductive abilities of latent factor models for relational
learning. Journal of Artificial Intelligence Research, 64,
2019.

[Van Haaren et al., 2016] Jan Van Haaren, Guy Van den
Broeck, Wannes Meert, and Jesse Davis. Lifted generative
learning of markov logic networks. Machine Learning,
103(1):27–55, 2016.


